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In the present solution it should be noted that the fluid
approaches the fin base at x = 1 rather than moving in the
opposite direction, away from a leading edge at x =0, as it
doesinmost other similarity solutions. The results are valid for
long fins, and give a first approximation for heat transfer and
fluid flow for finite length fins providing the tip temperature is
nearlyequalto the bulk fluid temperature and the heat transfer
near the tip is an insignificant fraction of the total fin heat
transfer. No direct comparison can be made between the
present solution and the isothermal vertical flat plate
similarity solution becausc of the lack of aleading edgeand the
breakdown of the fin conduction equation under isothermal
fin conditions.
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NOMENCLATURE
A,...,H boundary layer shape factors
Cyy local friction coefficient
velocity profile
gx streamwise component of gravity
Grx local Grashof number
LI functions associated with the deviation from
unity
m parameter for the external velocity variation
m, parameter for the ambient temperature
variation
n parameter for the wall-ambient temperature

difference variation

Nux local Nusselt number

RMT 26:11-3

Pr Prandtl number

Rex local Reynolds number

T temperature

AT, wall-ambient temperature difference
“ velocity in x direction

X,y boundary layer coordinates

Greek symbols

B cocfficient of thermal expansion

4,4, viscous and thermal boundary layer
thicknesses

¢ boundary layer thickness ratio

i, similarity variables in y direction

0 temperature profile
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AA, shape factors associated with the second
derivative of the velocity profile
v kinematic viscosity
¢ wedge half-angle.
Subscripts
c characteristic scale
[ boundary layer edge
t thermal boundary layer
w wall
INTRODUCTION

THE PRESENT note proposes an approximate solution
procedure for the prediction of the laminar convective heat
transfer through thermal boundary layers. This procedure
based on an integral approach is quite general and applicable
to bothfree and forced convection heat transfer problems. The
origin of the method stems from the previous work on the free
convection flows under non-uniform gravity [1], which
subsequently has been extended to the laminar film
condensation problem [2]. In the previous free convection
study [1], the ratio of the viscous boundary layer thickness to
the thermal boundary layer thickness has been treated as an
additionalunknown toaccountfor the Prandtl number effects.
Moreover, an effort has been made to satisfy the conditions on
the second derivatives of the velocity and temperature profiles
at the wall, which are implicit in the differential form of the
momentum and energy conservation equations. These wall
conditions(which are not satisfied in usualintegralmethodsin
free convection flows) obviously are not trivial since it is the
local temperature gradient at the wall which determines the
heat transfer rate through the boundary layers.

It will be shown that the same principles can be adopted for
the forced convective heat transfer problems. In order to reveal
full features of this general solution procedure, the present
study first deals with the forced convection over a non-
isothermal wedge, and then, the free convection over a non-
isothermalflat plateimmersed in a thermally stratified fluid, as
depicted in Fig. 1. The two problems, although representing
quite different physical situations, have common features in
their mathematical treatments. Both problems admit similar
solutions in the cases which can be specified by two
configuration parameters associated with the external and
wall conditions.

General expressions for the local Nusselt number are
obtained in a closed form for arbitrary values of Prandtl
number and the configuration parameters. In fact, the
agreement between the present approximate solutionsand the
available exact solutions turns out to be excellent over a wide
range of Prandtl numbers.

FORCED CONVECTION OVER A WEDGE

Without restricting the physical model to the wedge flow of
the present concern in Fig. 1(a), the integral relations for the
conservation equations may be obtained from a usual control
volume analysis upon carrying out the integration toward the
outermost boundary layer edge, namely, 0 < y < max(6,6),
where 6 and §, are the viscous and thermal boundary layer
thicknesses, respectively. After some manipulation, one
obtains

d 3 & o
d—J (u.u—ul)dy+—""‘f w—wdy=v—| ,  (1a)
x Jo dx Jo 0y|y=0
d [ v 8
= T-T)dy= —~— —(T=T)l,eo. (b
= L UT=T)dy= =~ 2 (T=Thheo (11

The boundary layer coordinates (x, ) are aligned along the
wall and its normal in a usual manner. uis the velocity in the x
direction while the temperature, Prandtl number and
kinematic viscosity are denoted by T, Pr and v, respectively.
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F1G. 1. Physical model and coordinates (a) forced convection
over a wedge and {b) free convection over a vertical flat plate.

The subscript e refers to the corresponding boundary layer
edge, y = 6 or 8, thus, u, for the free stream velocity and T, for
the ambient temperature which is assumed to be constant in
the case of forced convection flows.

As already emphasized, special attention is paid on the
conditions along the wall, which virtually govern thelocal heat
transfer rate. The observation on the original differential forms
of the conservation equations reveals that the following
auxiliary relations must hold at the wall where the convective
terms vanish:

o*u du

a2 = —Uu, _e; (23)
oy* ly=0 dx

and

62

W(T_ Dly-0=0. (2b)
Upon noting that the velocity field in the forced flow is free

from the temperature field, equation (1a) may be integrated to

obtain the following expression:

(6/x)* Rex = (2C/G)1, (3a)
where
Rex = ux/v, 3b)
C= i Eﬁ s 3c)
ue ay y=0
7]
G =J (u,u—1u?)dy/uls, (3d)
0
C]
H =I (u,—uw)dy/Gu.é, (3¢)
[}
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and

J CGu* cxp[—J (dH/dx)In u? dx:Idx
0

0

I= . (30)

CGul* exp[—J (dH/dx)In 2 dx]x

[o]

The shape factor G may be identified as the ratio of the
momentum thickness to & while H as the ratio of the
displacement thickness to the momentum thickness. The
function I obviously becomes unity in the case of a flat plate at
zero incidence. Equation (2a) for the wall condition may now
be rewritten as

1
(6/x)* Rex = 6A [ S22, (4a)
dlnx
where
1 61 ~2
A=—-222 . (4b)
6 u. oy y=0

For the one-parameter family of velocity profiles, the
Pohlhausen’s polynomial of the fourth degree may be chosen:

wu, = f01;A) = R+ A =3A2 —2=3A)P + (1 = Ay,
(5a)

where
1 =y/é. (5b)

In addition to the wall condition given by equation (4b), the
function satisfies f =0 at y =0 and &f/én = 8% /én* =0,
f=taty=1.

Upon performing integrations on equation (5a), all the
shape factors such as C, G and H may be specified in terms of
the algebraic functions of A alone. Substituting these relations
into the RHS of equation (3a), and equating equation (3a) with

1
D= J 001)f[min(7/{,1); Aldn,
0

_ jries2+ A2 — 180AL% —27(2— 3A)] + 14(1 — A)]/25200*
T L0756 — 126(6— A), + 84(4— A) 2 — 18(3 — A){* +(14~5A)%)/2520 for { <1,

equation (4a), one obtains an implicit equation for A(x) which,
in general, must be solved by an iterative procedure fora given
u(x) distribution. However, for the self-similar boundary
layers of the present concern, equation (3f) can be reduced to

1

= a2 @)
where
u, o x™, (6b)
and
m= ¢/(n—¢). (69)

¢ inequation (6c) denotes the wedge half-angle asindicated in
Fig. 1(a). Naturally, the above-mentioned implicit equation
for A reduces itsell to a remarkably simple algebraic equation
as follows:

_ A(148-8A—5A%)
T 15(56—52A+ 10AZ + A3

Thus, the differential equation has been reduced to the simple
algebraic equation. It is interesting to note that equation (7)
predictsthe flow separation(A = —2)atm = —0.1. This value
is in good accord with —0.091 obtained from the exact
solution by Hartree [3]. With the aid of equation (4a), the
friction coefficient

m

Y

2v éu

Cp=——
Ix 2 5
u; 0y|y=o0

1723

may be formulated as
12 m 172
Cip R =22+A)|—] . 8
7x Rex 2+ )(6 A) (8)

The variation of the friction coefficient with respect to the
configuration parameter m is indicated along with the exact
solution by Hartree [3]in Fig. 2. The agreement appears to be
excellent.

Having established the velocity field, the energy equation
(1b) may now be integrated to yield

(8/x)* Rex = (2E/Pr D)I,, (9a)
where
5, ¢
= —— —(T=T),=0 9b
E AT, ay( My=0 (9b)
AT, =T,-T, (9¢)
5
D= I u(T—T)dy/u AT, (9d)
1
and
J D ATy, dx
=22 (%)

D AT?u.x

AT, denotes the temperature difference between the wall and
the ambient fluid. Equation (2b) for the wall condition
prompts one to assume

(T—TYAT, = 0(1) = 1 =f(1:;0) = 1~2y,+277 —n*, (102)

where

n= y/al' (10b)

Equation (10a) yields E = 2 and
for{ =1, (11a)
(11b)

0.9

0.7—

Cre Rex'2/2

——— Exact. solution (3]
— Present solution

0.5—

I | I | |

o] 0.2 0.4 06 08 1.0
m

F1G. 2. Friction coefficient in wedge flow.
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10—
« Exact solution [4](99% boundary layer thickness)
Present solution ./-’
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F1G. 3. Boundary layer thickness ratio in wedge flow.

where the boundary layer thickness ratio { is introduced as
{ =6/, (12)

In thecase of the similar thermal boundary layers, equation
(9¢) can be reduced to

1

= 1
1+m+2n (133)

where

AT, « x". (13b)

The function I, becomes unity in the case of the isothermal flat
plate at zero incidence.
Equations (4a) and (9a) may be combined to give

2 m 2
T3Al+m+2\D/

Thus, the differential equations for the momentum and energy
conservationshave eventually been reduced to a pair of simple
algebraic equations (7) and (14) in the casc of the similar
boundary layers. For given m, the shape factor A can be
obtained from equation (7), and all the coefficients in D({; A)
may be evaluated according to equations (11). Once this is
done, equation (14) may be used to obtain ¢ for a given Prand
the configuration parameters m and n. This essentially
completes the solution of the problem.

With the aid of cquation (4a), the following expression may
bederived for the local Nusselt number Nux = Ex/é, = 2{x/é
which is of primary interest in the present study:

172
Nux/Rex'? = 2¢( 2} .
6A

Pr (14)

(13)

The boundary layer thickness ratio { and the proportional
constant associated with Nux are plotted in Figs. 3 and 4
for the case of the isothermal wall, namely, n=0. The
numecrical valuesfrom theexact solutions [4, 5] are alsoshown
in Figs. 3 and 4 for comparison. The agreement of the present
approximate solutions with the exact solutions is scen to be
extremely good.

FREE CONVECTION OVER A VERTICAL
FLAT PLATE IMMERSED IN A
THERMALLY STRATIFIED FLUID

The same principles can be adopted for the free convection
problem. As performed in the forced convection problem, the
integral relations for the conservation cquations have been
obtained from ‘a control volume consideration within the

thickness from the wall to the outermost boundary layer edge.
Upon noting u=01for y> 6 and T = T, for y > é, (thus,
saving some part of theintegration), one obtains the following
momentum and energy equations:

'
uldy = ﬁng

dx J, °

d min(d.8) dT. L]
—J w(T—T)dy+— J‘ udy
dx Jo dx Jo

h a
(T—T)dy—v—
oy

» (16a)

y=0

v 0
7 35 T~ Th=o. (16b)

Inequation(16a), the therma! expansion coefficient is given by
B while the strcamwise component of the gravitational
acceleration is denoted by g, which, of course, is constant for
the flat plate of the present concern, but, may, in general, bea
function of x. For the constant ambient temperature,
equations (16) become identical to those obtained in the
previous study [1].

The auxiliary relations for the required wall conditions are
givenuponeliminating the convection termsfrom the original
differential equations:

ou

P T —Bg.AT., (17a)
and
52
37 T Tl=o = 0. (17b)

The functions for the velocity and temperature profiles are

[{o] n=0 .
m=l /';:::
- et —
~ . . :/u
= ot e
> 0 ar it m »0.1765
& /.7:4 me0
N
3 W
/ .  Exact solution [4,5]
—— Present sotution
162 | ] I J
102 10" I 10 102
Pr

FiG. 4. Nusselt number in wedge flow.



Technical Notes

introduced as
ufu, = f(n), (18a)
and
(T—T)/AT, = 6(n), (18b)

where the characteristic velocity u, and the wall and ambient
temperaturedilference AT, are functions of x alone. Equation
(17a) may now be written alternatively as

u, = g AT,8%vA, (19a)
where
d¥f
Ap=—— (19b)
7 d’lz =0

Asequations(18)and (19a)are substituted into equations(16),
equations(16a)and (16b)may besolved for two unknowns, the
viscous boundary layer thickness é and the boundary layer
thickness ratio {. For this purpose, one may regard both
equations (16a) and (16b) as the differential equations for §*
and obtain two distinct closed form expressions for §*. The
resulting expressions run as follows:

fx {(Dg,AT3)" exp {(4F/3) j [d7;/dx)/(DAT,)] dx} dx
ll — 0 )
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for the constant ambient temperature, have been performed in
the previous study on the free convection [1].

Thesself-similar boundary layers of the present concern may
be characterized by two constant configuration parameters m,
and #n such that

T.— T. = mAT,, (24a)

and

AT, o X", (24b)

where T, isany constantreference temperature. The parameter
m, together with n characterizes the ambient temperature
variation. For example, m, = 0 corresponds to the constant
ambient temperature while m, = —1 to the constant wall
temperature. Since AT, is assumed to be positive, and
dT,/dx > 0 for the environment to be stable, only on the
combinations of m, and n satisfying mn > 0 are of physical
interest. For such similar boundarylayers, the functions I and
I, reduce themselves to

I= ;, (25a)*
1+(3/5)n
and
|- 1
(/) [5+(my3D)]n
The substitution of the above equations into the last two

expressions in equation (20a) leads to the following algebraic
equation for {:

(25b)*

3 14+(3/5n { { } 06
T 1+(1/3)[5+(m/3D)]n |21D[(3/0-21}" )

{(Dg,AT3)' exp {(4F/3) Jx [(dT./dx)/(DAT,)] dX} x
0o

cGr (B _C\ _METL
6 Grx = 7 x) =S ple @
with
Grx = g AT, x>V, (20b)
I [(B/O)—(C/A . AT dx
(]
= y 2
B —(C/A )@ AT 20
and
where

1
A=J S dn, B=f
o

min(1/{,1}
D= L SmO0En)dn,

The following third order polynomials are proposed to
determine the coefficients A-F:

Sy =n(1—n)?, (22a)

and

3 1

0n) = 1= 5+ - (220)
The velocity profile meets the conditions f = 0 at 4 = 0 and
S =df/dn =0 at n = 1 while the temperature profile satisfies
notonlyd = 1atn, = 0and 8 = d8/dy, = 0aty = 1, but also
the required condition on the second derivative at the wall,
namely, equation (17b). The proposed profiles give A, =4,
A=1/105,B=3/8,C=1,E=3/2,F=1/12and

f(a202 350494200 for{>=1,  (233)

T 35-210+20%)/420  for{< 1. (23b)

Upon substituting these coefficients into equation (20a), the
last two expressions in equation (20a) yield an implicit

equation for {(x), which can be solved iteratively for given Pr,
g.(x), T.(x) and AT,(x). Such iteralive claculations, although

E=——

) (20d)

d
Omydn, C= é . (2fabc)
n=0
do t
and F = j S dn. (21d,ef)
dn, m=0 [}

For given Pr and the configuration parameters m, and n, one
can readily obtain { from equation (26) with D({) given by
equations (23). Equation (26) indicates that { varies from 0 to
3/2 as Pr goes from O to 0. The variation of { for the constant
ambient temperature can be found in the previous report [1].
Once { is determined in this fashion, the local Nusselt
number Nux = Ex/6, = (3/2){x/6 may be calculated from

Nux/Grx'* = %c{_ﬂ}m.
168[(3/0)—2]

The variations of the local Nusselt number are indicated in
Figs. 5and 6 for the constant wall temperaturcatm, = —land
the increasing wall temperature at m, = 1, respectively.
Pictorial representation of the wall and ambient temperature
distributions are given on the lower right of the figures. The

@n

* ] and I, defined in equations (20¢c) and (20d) are somewhat
different from those in ref. [1].
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|0’——
——— Exaoct solution (6]
—— Present solution

g

x

N

3 [ f«®fe |

< 10
¥ f

m, =-1
x
102 | | ] }
1072 107 ! 10 102

F1G. 5. Nusselt number in free convection over an isothermal
plate.

exact solutions (0.1 < Pr < 20) obtained by Yanget al.[6] are
also plotted for the purpose of comparison. The curves in Figs.
5 and 6 include the case of n = 0 for the constant wall and
ambient temperatures as a reference. It is seen that the present
solution for n = 0 almost coincides with the exact solution.
Although the curves for non-zero n seem to deviate from the
exact solutions as Pr becomes small, an excellent agreement
has been maintained for the high Prandtl number cases.

CONCLUDING REMARKS

In the case of the similar boundary layers, the present
solution procedure (applicable to both free and forced
convection flows) reduces the conservation equations to a
simple algebraic equation among the boundary layer
thickness ratio, Prandtl number and the configuration
parameters. Thus, an algebraic calculation of the boundary
layer thickness ratio for given Prandt! number and the
configuration parameters essentially completes the solution of
the problem. It is believed that the excellent agreement of the
present approximate solutions with the exact solutions is
primarily due to the practice employed to meet the conditions
on the curvatures of the velocity and temperature profiles at
the wall.

The mathematical simplification achieved in the present
study can be exploited for the speedy and accurate estimation
of the local heat transfer rate through the thermal boundary
layers.
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10—

——— Exact solution [6]
— Present solution

n=1.0

J2Nux/ Grat
5,

Pr

Fig. 6. Nusselt number in free convection over a
nonisothermal plate.
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