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Fin total heat transfer;

Ra\f~ '[
Nil = ---y- [-0'(0)l~-2 = - [-0'(0)) . (25)

,,2 }'

Fin local heal flux :

Ral/~ /[-1.
q =-- [-O'(O)l~-g = _'i'_F" [-0'(0)] . (26)

-/2 }'
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= - - [-4F -811FT
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Fin local Nusselt number:

Fluid horizontal velocity distribution :

- Ra\f~ [ Ra' /~ ]
!' = ~-l -4F-8--yF'~-1

-/2 . -/2'

I4k Ft
qr = is;'

In the present solution it should be noted that the fluid
approaches the fin base at x = I rather than moving in the
opposite direction, away from a leading edge at x = 0, as it
does in most other similarity solutions. The resulls are valid for
long fins, and give a first approximation for heat transfer and
fluid flow for finite length fins providing the tip temperature is
nearly equal to the bulk fluid temperature and theheat transfer
near the tip is an insignificant fraction of the total fin heat
transfer. No direct comparison can be made between the
present solution and the isothermal vertical flat plate
similarity solution because ofthe lack ofa leading edge and the
breakdown of the fin conduction equation under isothermal
fin conditions.
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boundary layer shape facrors
local friction coefficient
velocity profile
strearnwise component of gravity
local Grashof number
functions associated with the deviation from
unity
parameter for the external velocity variation
parameter for the ambient tempera lure
variation
parameter for the wall-ambient temperature
difference variation
local Nussclt number

Pr Prandtl number
Rex local Reynolds number
T temperature
tiT; wall-ambient temperature difference
u velocity in x direction
x.)' boundary layer coordinates

Greek symbols
P coefficient of thermal expansion
<5, <5, viscous and thermal boundary layer

thicknesses
( boundary layer thickness ratio
'/,'[, similarity variables in )' direction
o temperature profile

R"n' 26 : u-r
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A,A,

Subscripts
c
e
t
w

shape factors associated with the second
derivative of the velocity profile
kinematic viscosity
wedge half-angle.

characteristic scale
boundary layer edge
thermal boundary layer
wall

Technical Notes

(Ia)

(Ib)

(2b)

1i\'TRODUCTION

THE PRESENT note proposes an approximate solution
procedure for the prediction of the laminar convective heat
transfer through thermal boundary layers. This procedure
based on an integral approach is quite general and applicable
to both free and forced convection heat transfer problems. The
origin of the method stems from the previous work on the free
convection flows ' under non-uniform gravity [I], which
subsequently has been extended to the laminar film
condensation problem [2). In the previous free convection
study [I], the ratio of the viscous boundary layer thickness to
the thermal boundary layer thickness has been treated as an
additional unknown to account forthe PrandtJ numberefTects.
Moreover, an effort has been made to satisfy the conditions on
the second derivatives ofthe velocity and temperature profiles
at the wall, which are implicit in the differential form of the
momentum and energy conservation equations . These wall
conditions(which are not satisfied in usual integral methods in
free convection flows) obviously are not trivial since it is the
local temperature gradient at the wall which determines the
heat transfer rate through the boundary layers ,

It will be shown that the same principles can be adopted for
the forced convective heat transfer problems. In order to reveal
full features of this general solution procedure. the present
study first deals with the forced convection over a non­
isothermal wedge , and then, the free convection over a non­
isothermal flat plate immersed in a thermally stratified fluid, as
depicted in Fig. 1.The two problems, although representing
quite different physical situations, have common features in
their mathematical treatments. Both problems admit similar
solutions in the cases which can be specified by two
configuration parameters associated with the external and
wall conditions.

General expressions for the local Nusselt number are
obtained in a closed form for arbitrary values of PrandtJ
number and the configuration parameters. In fact, the
agreement between the present approximate solutions and the
available exact solutions turns out to be excellent over a Wide
range of Prandtl numbers.

FORCED CONVECTION OVER A WEDGE

Without restricting the physical model to the wedge flow of
the present concern in Fig. I(a), the integral relations for the
conservation equations may be obtained from a usual control
volume analysis upon carrying out the integration toward the
outermost boundary layer edge, namely, 0 :;; y :;; max (8. 8J.
where () and 8, are the viscous and thermal boundary layer
thicknesses, respectively. After some manipulation, one
obtains

~ r~ (u,u-u2)dy+ du, r~ (u,-u)dy = v~ul •
dx Jo dx Jo oy ,=0

d i~' v 0- u(T-Tc)dy= ---(T-T,)I,=o.
dx 0 Pr oy

The boundary layer coordinates (x,y) are aligned along the
wall and its normal in a usual manner. u is the velocity in thex
direction while the temperature. Prandtl number and
kinematic viscosity are denoted by T, Pr and v, respectively.

(0)

(b)

FIG. 1. Physical model and coordinates (a) forced convection
over a wedge and (b) free convection over a vertical flat plate.

The subscript e refers to the corresponding boundary layer
edge, y = 8 or 8,. thus, u, for the free stream velocity and T, for
the ambient temperature which is assumed to be constant in
the case of forced convection flows.

As already emphasized, special attention is paid on the
conditions along the wall, which virtually govern the local heat
transfer rate.The observation on the original differential forms
of the conservation equations reveals that the following
auxiliary relations must hold at the wall where the convective
terms vanish:

(2a)

and

02

;;-'2 (T-T,lI,=o = o.
U}'

Upon noting that the velocity field in the forced flow is free
from the temperature field. equation (Ia) may be integrated to
obtain the following expression:

(8fx)2 Rex = (2C{G)I, (3a)

where

Rex = u.x]», (3b)

8 cui (3c)c=--
u, By ,-0'

G =J: (u,u-u2)dy/u;8, (3d)

11=f: (u,-u)dy/Gu,8, (3e)



Technical Notes 1723

and

II/II, '" 1('1;1\) = (2+1\)'1-3I\'12-(2-31\)1]3+(I-I\),t.

(Sa)
(ge)

(ge)

(9b)

(9d)

(lOb)

8. e
E= ---(T-T.)I 0AT.ay ,,=,

!iT. = Tw-1;,

f'·D = 0 II(T - 1;)dy/u,.1 Two"

'I, = y/o,.

Equation (lOa) yields E = 2 and

where

and

may be formulated as

C/~ Rex l/
2 = 2(2+ 1\)(6:Y /2. (8)

The variation of the friction coefficient with respect to the
configuration parameter m is indicated along with the exact
solution by Hartree [3] in Fig. 2.The agreement appears to be
excellent.

Having established the velocity field, the energy equation
(Ib) may now be integrated to yield

(8JX)2 Rex = (2E/Pr D)I" (9a)

I: D .1T;II, dx
I, = .=....:..-=:--:-:::-;---

D .1T;II,x

!iTw denotes the temperature difference between the wall and
the ambient fluid. Equation (2b) for the wall condition
prompts one to assume

(T-1;)/!iTw =: O(IJ.) = 1-/(11.;0)= 1-2'1,+21J~-IJ\ (lOa)

where

(4a)

(5b)

(4b)

'I = y/8.

j(d In II,)(8/:r;)2 Rex = 6A --,
d In x

where

I 8
2

0
2

11 /1\= ---~ .
6 II, vy ,=0

For the one-parameter family of velocity profiles, the
Pohlhausen's polynomial of the fourth degree may be chosen:

1
_- J: CGII:

T 211
CXp [ - J: (dll/dx) In II; dX}X

(3f)

CGII: T211 exp[ - J: (dll/dx)In II; dxJx .
The shape factor G may be identified as the ratio of the
momentum thickness to 8 while 11 as the ratio of the
displacement thickness to the momentum thickness. The
function I obviously becomes unity in the case ofa flat plate at
zero incidence. Equation (2a) for the wall condition may now
be rewritten as

where

In addition to the wall condition given by equation (4b), the
function satisfies I = 0 at 'I = 0 and if/GIl= aY/bl2 = 0,
r = I at 1/ = I.

Upon performing integrations on equation (Sa), all the
shape factors such as C. G and J/ may be specified in terms of
the algebraic functions of1\ alone, Substituting these relations
into the RHS ofequation (3a),and equating equation (3a) with

D =f O('IJ/[min (IJJC, I); 1\] d'l,

{
[ 168(2+ I\K3 -180M2 -27(2":'3I\K + 14(1-1\)]/2520(4

= [756-126(6-1\)(+84(4-1\)(2-18(3 -I\W+(14-51\)(']/2520

for n. I,

for C'" I,

(lIa)

(lib)

(7)

FIG. 2. Friction coefficient in wedge flow.
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1= (6a)

1+(3+2H)m
,

where

and
lie o:x", (6b)

III = ¢/(T[ - ¢), (6c)

equation (4a). one obtains an implicit equation for I\(x) which ,
in general, must be solved by an iterative procedure for a given
II,(X) distribution. However, for the self-similar boundary
layers of the present concern, equation (3f) can be reduced to

1\(148 -81\-51\2)
III = .

15(56-521\+ 101\2+1\3)

Thus, the differential equation has been reduced to the simple
algebraic equation. II is interesting to note that equation (7)
predictstheflowseparation(1\ = -2)atm = -0.1. This value
is in good accord with -0.091 obtained from the exact
solution by Hartrce [3]. With the aid of equation (43), the
friction coefficient

¢ in equation (6c) denotes the wedge half-angle as indicated in
Fig, I(a), Naturally, the above-mentioned implicit equation
for 1\ reduces itself to a remarkably simple algebraic equation
as follows:
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FIG. 3. Boundary layer thickness ratio in wedge flow.

(12)

where the boundary layer thickness ratio Cis introduced as

(17a)

(16a)

(17b)

(16b)

iJ2
ay2 (T-T.)I,~o = O.

The functions for the velocity and temperature profiles are

and

Exact solut ion [4,5]
Present sotut ion

10

In equation (16a), the thermal expansion coefficient is given by
P while the strcarnwise component of the gravitational
acceleration is denoted by gA which, of course, is constant for
the flat plate of the present concern, but, may, in general, be a
function of x. For the constant ambient temperature,
equations (16) become ident ical to those obtained in the
previous study [I). .

The auxiliary relations for the required wall conditions are
given upon eliminating the convection terms from' the original
differential equations:

iJ2uI 'v-a1 = -PgA~Tw,
y ,-0

thickness from the wall to the outermost boundary layer edge .
Upon noting II = 0 for y ~ band T = T. for y ~ b, (thus,
saving some part of the integration), one obtains the following
momentum and energy equations:

d I' I~' iJuI- u1dy=PgA (T-T.)dy- v:;- ,
dx 0 0 OY,=o

d Im;n{'.~.) dT. I~
- I/(T-T.)dy+-' u dy
dx 0 dx 0

v iJ
= -Pr iJ/T-T.)I,=o.

(14)

(13a)

(13b)~Tw cc x".

1
I, = ,

l+m+2n

where

FREE COl"VECTIO:-J OVER A VERTICAL
FLAT PLATEI:lt:\tERSEU IN A

1llERI\tALLY STRATIFIED FLUID

In the case of the similar thermal boundary layers, equation
(ge) can be reduced to

The function I, becomes unity in the case of the isothermal flat
plate at zero incidence.

Equations (4a) and (9a) may be combined to give

2 m (e)
Pr = 3" A(I +m+2n) D '

Thus, the differential equations for the momentum and energy
conservations have eventually been reduced to a pair of simple
algebraic equations (7) and (14) in the case of the similar
boundary layers. For given m, the shape factor A can be
obtained from equation (7),and all the coefficients in D(C; A)
may be evaluated according to equations (11). Once this is
done, equation (14)may be used to obtain Cfor a given Pr and
the configuration parameters m and n. This essentially
completes the solution of the problem.

With the aid of equation (4a), the following expression may
be derived for the local Nussell number Nux = Ex/b, = 2Cx/b
which is of primary interest in the present study :

Nux/Rex l/
2 = 2C(;~Y/2. (IS)

The boundary layer thickness ratio Cand the proportional
constant associated with Nux arc plotted in Figs. 3 and 4
for the case of the isothermal wall, namely, II = O. The
numerical values from the exact solutions [4,5] are also shown
in Figs . 3 and 4 for comparison. The agreement of the present
approximate solutions with the exact solut ions is seen to be
extremely good.

The same principles can be adopted for the free conve ction
problem. As performed in the forced convection problem, the
integral relations for the conservation equations have been
obtained from 'a control volume consideration within the

I0 2L.,:- --'---,-- ...L '-- -'

1(J2 10

Pr

FlO. 4. Nusselt number in wedge flow.
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where

where the characteristic velocity u. and the wall and ambient
temperature difference tlTw are functions of x alone. Equation
(17a) may now be written alternatively as

u. = pg.tlTwb2/1·Af, (19a)

(26)

(24a)

(24b)

(2Sb)·

(2Sa)·

ATw ex: x",

I
1=-.,..,....,.,.-

I +(3IS)n'

T,-T, = m/iTw,

1+(3IS)n { , }
Pr = 1+O/3)[S+(m,/3D)]n 21D[{3fC)-2] .

and

1
I = -----,,-----
, 1+(1/3)[5 +(mJ3D)]n'

The substitution of the above equations into the last two
expressions in equation (20a) leads to the following algebraic
equation for':

and

for the constant ambient temperature, have been performed in
the previous study on the frce convection [ll

The self-similar boundary layers of the present concern may
be characterized by two constant configuration parameters m,
and n such that

where T, is any constant reference temperature. The parameter
m, together with n characterizes the ambient temperature
variation. For example, m, = 0 corresponds to the constant
ambient temperature while m, = -1 to the constant wall
temperature. Since tlTw is assumed to be positive, and
dT,/dx ~ 0 for the environment to be stable, only on the
combinations of mt and n satisfying m.n ~ 0 are of physical
interest. For such similar boundary layers, the functions I and
I, reduce themselves to

(20e)

(18a)

(18b)

(20a)

(20b)

ufu; =!(I/),

(T-T,)/tlTw = O(IIJ,

Grx = pg.tlTwx 3/1·2,

1= f: [(BfC)-(CfAJ)](g.tlTw)3/
S dx

[(BfC)-(C/A f)](gxtlTw)3/sx '

and

introduced as

with

Af = _ d2~1 (19b)
dl/ .-0

As equations (18) and (19a) are substituted into equations (16),
equations (16a) and (16b)may be solved for two unknowns, the
viscous boundary layer thickness b and the boundary layer
thickness ratio ,. For this purpose, one may regard both
equations (16a) and (16b) as the differential equations for b4

and obtain two distinct closed form expressions for b4
• The

resulting expressions run as follows:

4 4AJ(B C) 4AfE'
(blx) Grx =5:4 ,- A

f
1= 3Pr vI"

and

I = f: C(Dg.tlT;)1/3 eXP{ (4FI3)f: [(dT,/dx)/(MTw ) ] dX} dx

, C(DgxtlT;)1/3 eXP{(4FI3)f: [(dT,ldX)/(MTw)]dX}X '

(2Od)

where

(21a,b,c)

im,ne, IC.!) dOI i'
D = f(I/)O(CI/)dl/, E = - - and F = 0 f(ll) d'l·

o dll, ",-0

The following third order polynomials are proposed to
determine the coefficients A-F:

(2Id,e,f)

and

Upon substituting these coefficients into equation (20a),the
last two expressions in equation (20a) yield an implicit
equation for '(x), which can be solved iteratively for given Pr,
O.(x). T,(x) and tlT.(x). Such iterative claculations, although

For given Pr and the configuration parameters m,and n, one
can readily obtain' from equation (26) with D(O given by
equations (23). Equation (26) indicates that' varies from 0 to
3/2 as Pr goes from 0 to co,The variation of' for the constant
ambient temperature can be found in the previous report [ll

Once' is determined in this fashion, the local Nusselt
number Nux = Exlb, = (3/2Kxlb may be calculated from

NUXIGrxI/4=~'{ 1+(3/S)n }1/4. (27)
2 168[(3fC)-2]

• I and I, defined in equations (20e) and (2Od)are somewhat
different from those in ref. [ll

The variations of the local Nusselt number are indicated in
Figs. 5and 6 for the constant wall temperature at m, = -1 and
the increasing wall temperature at m, = I, respectively.
Pictorial representation of the wall and ambient temperature
distributions are given on the lower right of the figures. The

(22a)

(22b)

(23a)

(23b)

The velocity profile meets the conditions! = 0 at 'I = 0 and
f = dfldl/ = 0 at 1/= 1 while the temperature profile satisfies
not only 0 = 1 at 1/,= OandO = dOld,1. = Oat'l = 1, but also
the required condition on the second derivative at the wall,
namely, equation (17b). The proposed profiles give Af = 4,
A = 1/105, B = 3/8, C = I, E = 3/2, F = 1/12 and

D = {(42'2_ 3S'+9)/420'4 for' ~ I,
(35-21'+2,3)1420 for ':0:;; 1.
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--- EXQct solution [6)
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--- Exoct solution (6)
-- Present solution n: -1.0

10

If}L L --l ---'- -'

10'2

Pr

FIG. 6. Nusselt number in free convection over a
nonisothermal plate.

10

10-210~_:;2------L:;----...l-----'-----l

Pr

FIG. 5. Nusselt number in free convection over an isothermal
plate.

exactsolutions(O.l .;; Pr c;20)obtained by Yang er at, [6] are
also plotted for the purpose of comparison. The curves in Figs.
5 and 6 include the case of n = 0 for the constant wall and
ambient temperatures as a reference. It is seen that the present
solution for n = 0 almost coincides with the exact solution.
Although the curves for non-zero n seem to deviate from the
exact solutions as Pr becomes small, an excellent agreement
has been maintained for the high Prandtl number cases.

CONCLUDING REMARKS

In the case of the similar boundary layers, the present
solution procedure (applicable to both free and forced
convection flows) reduces the conservation equations to a
simple algebraic equation among the boundary layer
thickness ratio, PrandtI number and the configuration
parameters. Thus, an algebraic calculation of the boundary
layer thickness ratio for given Prandtl number and the
configuration parameters essentially completes the solution of
the problem. It is believed that the excellent agreement of the
present approximate solutions with the exact solutions is
primarily due to the practice employed to meet the conditions
on the curvatures of the velocity and temperature profiles at
the wall.

The mathematical simplification achieved in the present
study can be exploited for the speedy and accurate estimation
of the local heat transfer rate through the thermal boundary
layers.
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